

HANDY & FREQUENTLY USED FORMULAS FOR THERMAL ENGINEERS

GEOMETRY & MATH | GEOMETRI & MATEMATIK

Cylindrical (Tube) Volume $V = \mathbf{p} / 4 \cdot d^2 \cdot \mathbf{L} [m^3]$ Cylindrical (Tube) Surface $\mathbf{A} = \mathbf{p} \cdot \mathbf{d} \cdot \mathbf{L} [m^2]$ Diameter $\mathbf{d} = \mathbf{\ddot{0}}(4 \cdot \mathbf{A} / \mathbf{p})$ [m]

Right-angled Triangle A = 90°: Geometrical Vector Sum $a^2 = b^2 + c^2$ \widehat{U} $a = \widehat{O}(b^2 + c^2)$ [m] $\cos B = c / a$; $\sin B = b / a$; $\tan B = b / c$

STRENGTH & STATICS | STYRKELÆRE & STATIK

Force $\mathbf{F} = \mathbf{m} \cdot \mathbf{a}$ [N] Stress $\mathbf{s} = \mathbf{F} / \mathbf{A}$ [N/m²] Stress $\mathbf{s} = \mathbf{e} \cdot \mathbf{E}$ [N/m²] Hook's Law Strain $\mathbf{e} = \mathbf{D}\mathbf{L} / \mathbf{L}$ [-] A = Cross section area [m²] E = Elasticity Modulus [N/m²] m = Mass [kg] a = Acceleration / Gravity Acceleration [m/s²] ΔL = Deformation in Length [m]; L= Length [m]

Bending Stress in beams $\mathbf{s} = \mathbf{M}_{T} / \mathbf{W}$ [N/m²] M_T = Torque [Nm] W = Section Modulus [m³] profile depending

Simple Supported Beam – Uniform spread load

Max. torque $M_{T, MAX} = P \cdot L / 8 [N \cdot m]$ at middle of the beam Max. Reflection $U = 5 \cdot M \cdot L^2 / (48 \cdot E \cdot I)$ [m] at middle

Cantilever Beam – Uniform spread load

Max. torque $M_{T, MAX} = P \cdot L / 2$ [N·m] at the fixed support in the wall Max. Reflection $U = M_{T, MAX} \cdot L^2 / (4 \cdot E \cdot I)$ [m] at free end of the beam

P = Total uniform load of beam [N] I = Moment of Inertia [m⁴]

HEAT & TEMPERATURES | VARME & TEMPERATUR

Absolute Temperature (Kelvin) **T = t + 273,15** [K] t = Temperature [°C]

Heat / Heat Content $\mathbf{Q} = \mathbf{m} \cdot \mathbf{C}_p \cdot (\mathbf{t}_2 - \mathbf{t}_1)$ [W] | [J] m = Mass Flow [kg/s] / Mass [kg] C_p = Specific Heat [J/(kgK] t_1 and t_2 = Temperatures Inlet and Outlet [K] | [°C]

Linearly Heat Expansion of Materials $DL = L \cdot a_L \cdot Dt$ [m]

Volumetric Heat Expansion of Materials $\mathbf{DV} = \mathbf{V} \cdot \mathbf{b}_{\mathbf{V}} \cdot \mathbf{Dt} [m^3]$ L = Length [m]; V = Volume [m³]; α_L = Length Expansion Coefficient [1/°C] β_V = Volume Expansion Coefficient [1/°C] Δt = Temperature Change [°C]

For Ideal Gasses :

 $\mathbf{p} \cdot \mathbf{v} = \mathbf{R} \cdot \mathbf{T} = \mathbf{p}_0 \cdot \mathbf{v}_0 \cdot (\mathbf{1} + \mathbf{t} / \mathbf{273}, \mathbf{15})$ Specific Volume $\mathbf{v} = \mathbf{1} / \mathbf{r}$ [m³/kg] $\mathbf{p} = \text{Pressure (bar abs.)}; \mathbf{p} = \text{Density [kg/ m³]}$ $\mathbf{T} = \text{Absolute Temperature [K]}$ $\mathbf{p}_0 \cdot \mathbf{v}_0$: Pressure and Specific volume at 0°C

R = Gas Coefficient $[J/(kg \cdot K)]$: Air = 287,1 J/(kg \cdot K) Steam = 461,5 J/(kg \cdot K)

1 kmol equals a volume of 22,4138 m³

 $\mathbf{m} = \mathbf{n} \cdot \mathbf{M} \text{ [kg]}$ $\mathbf{V}_{n} = \mathbf{n} \cdot \mathbf{V}_{mol} \text{ [m}_{n}^{3} \text{] at 0°C and 1,01325 bar}$ $\mathbf{r} = \mathbf{m} / \mathbf{V}_{n} \text{ [kg/m}_{n}^{3} \text{]}$

 $\begin{array}{l} \mathsf{M} = \mathsf{Mol} \; \mathsf{mass} \; [\mathsf{kg/mol}] \; ; \; \rho = \; \mathsf{Density} \; [\mathsf{kg/m} \; _n^3] \\ \mathsf{V}_n = \mathsf{Normal} \; \mathsf{Volume} \; [\mathsf{m}_n^3] \; ; \; n \; = \; \mathsf{Number} \; \mathsf{of} \; \mathsf{mol} \\ \mathsf{V}_{\mathsf{mol}} \; = \; \mathsf{Molar} \; \mathsf{Volume} \; [\mathsf{m}_n^3/\mathsf{mol}] \; ; \; \mathsf{m} \; = \; \mathsf{mass} \; [\mathsf{kg}] \\ \end{array}$

Individual Thermal Solutions with Boldness & Care www.abco.dk

HEAT TRANSFER | VARMEOVERFØRING

BY CONVECTION | VED KONVEKTION

Heat Transfer by Convection $\mathbf{Q} = \mathbf{k} \cdot \mathbf{F} \cdot \mathbf{DJ}$ [W] F = Heat Surface – Total wall area [m²]

Heat Transmission Coefficient

k = 1 / (1/ a_1 + 1/ a_2 + e/1 + f₁ + f₂) [W/(m²·K)] α_1 = Heat Transfer Coefficient – Fluid 1 [W/(m²·K)] α_2 = Heat Transfer Coefficient – Fluid 2 [W/(m²·K)] λ = Heat Conductivity Wall Material [W/(mK)] e = Wall Thickness [m] f₁ = Fouling Coefficient – for the wall of fluid 1 [m²·K/W)] f₂ = Fouling Coefficient – for the wall of fluid 2 [m²·K/W)]

BY RADIATION | VED STRÅLING

Radiation Heat between two surfaces 1 and 2 $\mathbf{F} = \mathbf{C}_{12} \cdot \mathbf{F}_1 \cdot ((\mathbf{T}_1/100)^4 - (\mathbf{T}_2/100)^4)$ [W]

Radiation Coefficient

 $C_{12} = 1 / (1/C_1 + 1/C_2 - 1/C_S) [W/(m^2 \cdot K)]$

 $\mathbf{C} = \mathbf{e} \cdot \mathbf{C}_{\mathbf{S}} [W/(m^2 \cdot \mathbf{K})]$

 ϵ = Emission ratio [-]

 C_s = Radiation Coefficient for the absolute black surface [-] T = Absolute temperature [K] Logarithmic Middle Temperature Difference $DJ = (Dt_1 - Dt_2) / In (Dt_1/Dt_2)$; all values in [K] | [°C] $\Delta t_1 = Difference$ in Temperatures of Fluid1 and Fluid 2 at "1" $\Delta t_2 = Difference$ in Temperatures of Fluid1 and Fluid 2 at "2" "1" and "2" being the physical positions of the inlets and outlets of heat exchanger in current or counter flow types

Nusselt's Number

$Nu = \mathbf{a} \cdot L_F / \mathbf{l} \quad [-] \quad \widehat{\mathbf{U}} \quad \mathbf{a} = Nu \cdot \mathbf{l} / L_F$

 α = Heat Transfer Coefficient [W/(m²·K)] L_F = Flow Length [m] e.g. diameter or plate length

 λ = Heat Conductivity Fluid [W/(m·K)]

General expression for forced circulation $Nu = K_1 \cdot Re^{K_2} \cdot Pr^{K_3}$

General expression for natural circulation $Nu = K_5 \cdot Gr^{K4} \cdot Pr^{K3}$ Prandtl's Number $Pr = r \cdot C_p \cdot n / 1$ [-]

Grashoff's Number $\mathbf{Gr} = \mathbf{g} \cdot \mathbf{r} \cdot \mathbf{DV} \cdot \mathbf{Dt} \cdot \mathbf{L}_{F}^{3} / \mathbf{m}$ [-]

g= Gravity acceleration [m/s²]

 K_1 , K2, K3, K4 and K5 are different constants and equations based on tests and depending on the type of heat transfer.

MECHANICS OF FLUIDS | STRØMNING & VÆSKEFYSIK

Total pressure $\mathbf{p}_{T} = \mathbf{p}_{S} + \mathbf{p}_{D}$ [N/m²] Dynamic pressure $\mathbf{p}_{D} = \frac{1}{2} \cdot \mathbf{c}^{2} \cdot \mathbf{r}$ [N/m²] Pressure Height $\mathbf{p}_{H} = \mathbf{g} \cdot \mathbf{r} \cdot \mathbf{H}$ [N/m²]

 p_{S} = Static pressure [N/m²] g = Gravity acceleration [m/s²] H = Height / Altitude [m]

Bernoulli's Law about constancy in pressure. All in $[N/m^2]$ $p_{S,1} + p_{D,1} + p_{H,1} = p_{S,2} + p_{D,2} + p_{H,2}$ $p_{S,1} + \frac{1}{2} \cdot c_1^2 \cdot r + g \cdot r \cdot H_1 = p_{S,2} + \frac{1}{2} \cdot c_2^2 \cdot r + g \cdot r \cdot H_2$

For Ideal Gasses:

Dynamic Viscosity $\mathbf{h} @ \mathbf{h}_0 \cdot (\mathbf{273 + t}) / \mathbf{273} [N \cdot s/m^2]$ t = Temperature [°C] Dynamic Viscosity $\mathbf{h} = \mathbf{n} \cdot \mathbf{r}$ [Pa·s] | [kg/(m·s)] Reynold's Number $\mathbf{Re} = \mathbf{c} \cdot \mathbf{L}_{F} / \mathbf{n}$ [-] v = Kinematic Viscosity [m²/s]; $\rho =$ Density [kg/m³] c = Velocity [m/s]; $L_{F} =$ Flow Length [m]

Pressure Drop in tube $\mathbf{D}\mathbf{p}_{TB} = \mathbf{l} \cdot \mathbf{p}_{D} \cdot \mathbf{L}_{T} / \mathbf{d}$ = $\mathbf{l} \cdot \frac{1}{2} \cdot \mathbf{r} \cdot \mathbf{c}^{2} \cdot \mathbf{L}_{T} / \mathbf{d}$ [N/m²] λ = Friction Coefficient [-]; L_{T} = Tube Length [m] \mathbf{d} = Internal Tube Diameter [m]; ρ = Density [kg/m³] \mathbf{c} = Velocity [m/s]

Pump Capacity $\mathbf{P} = \mathbf{h}_T \cdot \mathbf{q}_V \cdot \mathbf{S} \mathbf{D} \mathbf{p}$ [W] Total Efficiency $\mathbf{h}_T = (\mathbf{h}_{PUMP} \cdot \mathbf{h}_{MOTOR})$ Efficiency $\mathbf{h} = \mathbf{P}_{PERFORMED} / \mathbf{P}_{ABSORB}$ $\mathbf{q}_V = Volume flow [m^3/s]$ $\Sigma \Delta \mathbf{p} = Sum of all pressure drops in the circuit [Pa]$

ELECTRICITY | ELECTRICITET

Power / Capacity of a 1-Phase System : $P = U_{PH} \cdot I_{PH}$ [W]

Power / Capacity of a 3-Phase System : $\mathbf{P} = \mathbf{\ddot{0}3} \cdot \mathbf{U}_{N} \cdot \mathbf{I}_{N} \cdot \mathbf{cos j}$ [W]

 U_N = Net Voltage [V] ; I_N = Net Current [A] U_{PH} = Phase Voltage [V] ; I_{PH} = Phase Current [A] cos φ = Phase Angel [-]

 $\cos \varphi = 1$ for Heating elements and other simple resist. $\cos \varphi < 1$ for Electrical Motors (inductive resistance). Power, Voltage and Current in Conventional Resistances

Ohm's Law $\mathbf{U} = \mathbf{R} \cdot \mathbf{I} \quad [V]$

Power expressed by the resistance $\mathbf{P} = \mathbf{U} \cdot \mathbf{I} = \mathbf{U}^2 / \mathbf{R} = \mathbf{I}^2 \cdot \mathbf{R}$ [W]

U = Voltage [V]; I = Current [A] R = Resistance $[\Omega]$ | [Ohm]