HANDY \& FREQUENTLY USED FORMULAS

FOR THERMAL ENGINEERS

GEOMETRY \& MATH | GEOMETRI \& MATEMATIK

Cylindrical (Tube) Volume $\quad V=\pi / 4 \cdot d^{2} \cdot L\left[m^{3}\right]$
Cylindrical (Tube) Surface $A=\pi \cdot d \cdot L\left[m^{2}\right]$

Diameter $d=\sqrt{ }(4 \cdot A / \pi) \quad[m]$

Right-angled Triangle A $=90^{\circ}$: Geometrical Vector Sum

$$
a^{2}=b^{2}+c^{2} \Leftrightarrow a=\sqrt{ }\left(b^{2}+c^{2}\right) \quad[m]
$$

$$
\cos B=c / a ; \sin B=b / a ; \tan B=b / c
$$

Force F = m - a [N]
Stress $\sigma=F / A \quad\left[\mathrm{~N} / \mathrm{m}^{2}\right]$
Stress $\sigma=\varepsilon \cdot E \quad\left[\mathrm{~N} / \mathrm{m}^{2}\right]$ Hook's Law
Strain $\varepsilon=\Delta L / L$ [-]
$A=$ Cross section area $\left[\mathrm{m}^{2}\right]$
$\mathrm{E}=$ Elasticity Modulus [$\mathrm{N} / \mathrm{m}^{2}$]
$\mathrm{m}=$ Mass [kg]
$a=$ Acceleration / Gravity Acceleration $\left[\mathrm{m} / \mathrm{s}^{2}\right.$]
$\Delta \mathrm{L}=$ Deformation in Length [m] ; L= Length [m]
Bending Stress in beams $\sigma=M_{T} / \mathbf{W} \quad\left[\mathrm{N} / \mathrm{m}^{2}\right]$
$\mathrm{M}_{\mathrm{T}}=$ Torque $[\mathrm{Nm}]$
$\mathrm{W}=$ Section Modulus $\left[\mathrm{m}^{3}\right]$ profile depending

Simple Supported Beam - Uniform spread load
Max. torque $\mathrm{M}_{\mathrm{T}, \mathrm{MAX}}=\mathrm{P} \cdot \mathrm{L} / 8[\mathrm{~N} \cdot \mathrm{~m}]$
at middle of the beam
Max. Reflection $\mathrm{U}=5 \cdot \mathrm{M} \cdot \mathrm{L}^{2} /(48 \cdot \mathrm{E} \cdot \mathrm{I})$ [m] at middle

Cantilever Beam - Uniform spread load
Max. torque $M_{T, ~ M A X ~}=P \cdot L / 2[N \cdot m]$
at the fixed support in the wall
Max. Reflection $\mathrm{U}=\mathrm{M}_{\mathrm{T}, \mathrm{MAX}} \cdot \mathrm{L}^{2} /(4 \cdot \mathrm{E} \cdot \mathrm{I}) \quad[\mathrm{m}]$
at free end of the beam
$P=$ Total uniform load of beam [N]
I = Moment of Inertia [m^{4}]

Absolute Temperature (Kelvin)
$\mathrm{T}=\mathrm{t}+273,15$ [K]
$\mathrm{t}=$ Temperature $\left[{ }^{\circ} \mathrm{C}\right]$
Heat / Heat Content $Q=m \cdot C_{p}$ " $\left(\mathrm{t}_{2}-\mathrm{t}_{1}\right)$ [W]| [J]
$\mathrm{m}=$ Mass Flow [kg/s] / Mass [kg]
$\mathrm{C}_{\mathrm{p}}=$ Specific Heat [J/(kgK]
t_{1} and $\mathrm{t}_{2}=$ Temperatures Inlet and Outlet $[\mathrm{K}] \mid\left[{ }^{\circ} \mathrm{C}\right]$

Linearly Heat Expansion of Materials
$\Delta L=L \cdot \alpha_{L} \cdot \Delta t[m]$
Volumetric Heat Expansion of Materials
$\Delta V=V \cdot \beta_{V} \cdot \Delta t\left[m^{3}\right]$
$\mathrm{L}=$ Length $[\mathrm{m}] ; \mathrm{V}=$ Volume $\left[\mathrm{m}^{3}\right]$;
$\alpha_{L}=$ Length Expansion Coefficient $\left[1 /{ }^{\circ} \mathrm{C}\right]$
$\beta_{\mathrm{V}}=$ Volume Expansion Coefficient $\left[1 /{ }^{\circ} \mathrm{C}\right]$
$\Delta t=$ Temperature Change $\left[{ }^{\circ} \mathrm{C}\right]$

For Ideal Gasses :

p " v = R $\cdot \mathrm{T}=\mathrm{p}_{0} \cdot \mathrm{~V}_{0}$ " (1+t/273,15)
Specific Volume v $=1 / \rho\left[\mathrm{m}^{3} / \mathrm{kg}\right]$
$\mathrm{p}=$ Pressure (bar abs.) ; $\rho=$ Density $\left[\mathrm{kg} / \mathrm{m}^{3}\right]$
$\mathrm{T}=$ Absolute Temperature $[\mathrm{K}]$
$\mathrm{p}_{0} \cdot \mathrm{v}_{0}$: Pressure and Specific volume at $0^{\circ} \mathrm{C}$
$\mathrm{R}=$ Gas Coefficient [J/(kg•K)]:
Air $=287,1 \mathrm{~J} /(\mathrm{kg} \cdot \mathrm{K})$ Steam $=461,5 \mathrm{~J} /(\mathrm{kg} \cdot \mathrm{K})$
1 kmol equals a volume of $22,4138 \mathrm{~m}^{3}$
$\mathbf{m}=\mathbf{n} \cdot \mathbf{M}[\mathrm{kg}]$
$\mathbf{V}_{\mathrm{n}}=\mathbf{n} \cdot \mathbf{V}_{\text {mol }}\left[\mathrm{m}_{\mathrm{n}}{ }^{3}\right]$ at $0^{\circ} \mathrm{C}$ and 1,01325 bar
$\rho=m / V_{n}\left[k g / m_{n}^{3}\right]$
$M=$ Mol mass $[\mathrm{kg} / \mathrm{mol}] ; \rho=$ Density $\left[\mathrm{kg} / \mathrm{m}_{\mathrm{n}}{ }^{3}\right]$
$V_{n}=$ Normal Volume $\left[\mathrm{m}_{\mathrm{n}}{ }^{3}\right] ; \mathrm{n}=$ Number of mol
$\mathrm{V}_{\text {mol }}=$ Molar Volume $\left[\mathrm{m}_{\mathrm{n}}{ }^{3} / \mathrm{mol}\right] ; \mathrm{m}=$ mass [kg]

BY CONVECTION | VED KONVEKTION

Heat Transfer by Convection $Q=\mathbf{k}^{2} \mathrm{~F} \cdot \Delta \boldsymbol{\vartheta}$ [W]
$\mathrm{F}=$ Heat Surface - Total wall area $\left[\mathrm{m}^{2}\right]$
Heat Transmission Coefficient
$k=1 /\left(1 / \alpha_{1}+1 / \alpha_{2}+e / \lambda+f_{1}+f_{2}\right)\left[W /\left(m^{2} \cdot K\right)\right]$
$\alpha_{1}=$ Heat Transfer Coefficient - Fluid $1\left[\mathrm{~W} /\left(\mathrm{m}^{2} \cdot \mathrm{~K}\right)\right]$
$\alpha_{2}=$ Heat Transfer Coefficient - Fluid $2\left[\mathrm{~W} /\left(\mathrm{m}^{2} \cdot \mathrm{~K}\right)\right]$
$\lambda=$ Heat Conductivity Wall Material [W/(mK)]
$\mathrm{e}=$ Wall Thickness [m]
$\mathrm{f}_{1}=$ Fouling Coefficient - for the wall of fluid $\left.1\left[\mathrm{~m}^{2} \cdot \mathrm{~K} / \mathrm{W}\right)\right]$
$f_{2}=$ Fouling Coefficient - for the wall of fluid $\left.2\left[\mathrm{~m}^{2} \cdot \mathrm{~K} / \mathrm{W}\right)\right]$

BY RADIATION | VED STRÅLING

Radiation Heat between two surfaces 1 and 2
$\Phi=C_{12} \cdot F_{1} \cdot\left(\left(T_{1} / 100\right)^{4}-\left(T_{2} / 100\right)^{4}\right) \quad[W]$
Radiation Coefficient
$C_{12}=1 /\left(1 / C_{1}+1 / C_{2}-1 / C_{s}\right) \quad\left[W /\left(m^{2} \cdot K\right)\right]$
$\mathrm{C}=\boldsymbol{\varepsilon} \cdot \mathrm{C}_{\mathrm{S}}\left[\mathrm{W} /\left(\mathrm{m}^{2} \cdot \mathrm{~K}\right)\right]$
$\varepsilon=$ Emission ratio [-]
$\mathrm{C}_{\mathrm{s}}=$ Radiation Coefficient for the absolute black surface [-] $\mathrm{T}=$ Absolute temperature [K]

Logarithmic Middle Temperature Difference
$\Delta \vartheta=\left(\Delta t_{1}-\Delta t_{2}\right) / \ln \left(\Delta t_{1} / \Delta t_{2}\right)$; all values in $[K] \mid\left[{ }^{\circ} \mathrm{C}\right]$
$\Delta t_{1}=$ Difference in Temperatures of Fluid1 and Fluid 2 at " 1 "
$\Delta \mathrm{t}_{2}=$ Difference in Temperatures of Fluid1 and Fluid 2 at " 2 "
" 1 " and " 2 " being the physical positions of the inlets and outlets of heat exchanger in current or counter flow types

Nusselt's Number
$\mathrm{Nu}=\alpha \cdot \mathrm{L}_{\mathrm{F}} / \lambda \quad[-] \quad \Leftrightarrow \quad \alpha=\mathrm{Nu} \cdot \lambda / \mathrm{L}_{\mathrm{F}}$
$\alpha=$ Heat Transfer Coefficient [W/(m $\left.{ }^{2} \cdot \mathrm{~K}\right)$]
$\mathrm{L}_{\mathrm{F}}=$ Flow Length [m] e.g. diameter or plate length
$\lambda=$ Heat Conductivity Fluid $[W /(m \cdot K)]$
General expression for forced circulation
$\mathrm{Nu}=\mathrm{K}_{1} \cdot \operatorname{Re}^{\mathrm{K} 2} \cdot \mathrm{Pr}^{\mathrm{K} 3}$
General expression for natural circulation
$\mathrm{Nu}=\mathrm{K}_{5} \mathrm{COr}^{\mathrm{K} 4} \cdot \mathrm{Pr}^{\mathrm{K} 3}$
Prandtl's Number $\operatorname{Pr}=\rho \cdot \mathrm{C}_{\mathrm{p}} \cdot \mathrm{v} / \lambda{ }_{[-]}$
Grashoff's Number $\mathrm{Gr}=\mathrm{g} \cdot \rho \cdot \Delta \mathrm{V} \cdot \Delta \mathrm{t} \cdot \mathrm{L}_{\mathrm{F}}{ }^{3} / \mathrm{v} \quad[-]$
$g=$ Gravity acceleration $\left[\mathrm{m} / \mathrm{s}^{2}\right]$
K_{1}, K 2 , K 3 , K 4 and K 5 are different constants and equations based on tests and depending on the type of heat transfer.

MECHANICS OF FLUIDS | STRØMNING \& VFESKEFYSIK

Total pressure $p_{T}=p_{S}+p_{D} \quad\left[\mathrm{~N} / \mathrm{m}^{2}\right]$
Dynamic pressure $p_{D}=1 / 2 \cdot c^{2} \cdot \rho\left[N / m^{2}\right]$
Pressure Height $p_{H}=g \cdot \rho \cdot H \quad\left[N / m^{2}\right]$
$p_{\mathrm{S}}=$ Static pressure $\left[\mathrm{N} / \mathrm{m}^{2}\right]$
$\mathrm{g}=$ Gravity acceleration $\left[\mathrm{m} / \mathrm{s}^{2}\right]$
$\mathrm{H}=$ Height / Altitude [m]
Bernoulli's Law about constancy in pressure. All in [$\mathrm{N} / \mathrm{m}^{2}$]
$p_{\mathrm{s}, 1}+\mathrm{p}_{\mathrm{D}, 1}+\mathrm{p}_{\mathrm{H}, 1}=\mathrm{p}_{\mathrm{s}, 2}+\mathrm{p}_{\mathrm{D}, 2}+\mathrm{p}_{\mathrm{H}, 2} \Leftrightarrow$
$p_{\mathrm{s}, 1}+1 / 2 \cdot \mathrm{c}_{1}{ }^{2} \cdot \rho+\mathrm{g} \cdot \rho \cdot \mathrm{H}_{1}=\mathrm{p}_{\mathrm{s}, 2}+\frac{1}{2} \cdot \mathrm{C}_{2}{ }^{2} \cdot \rho+\mathrm{g} \cdot \rho \cdot \mathrm{H}_{2}$

For Ideal Gasses:
Dynamic Viscosity $\eta \cong \eta_{0}$ " $(273+t) / 273 \quad\left[\mathrm{~N} \cdot \mathrm{~s} / \mathrm{m}^{2}\right]$ $\mathrm{t}=$ Temperature $\left[{ }^{\circ} \mathrm{C}\right]$

Dynamic Viscosity $\eta=v \cdot \rho[\mathrm{~Pa} \cdot \mathrm{~s}] \mid[\mathrm{kg} /(\mathrm{m} \cdot \mathrm{s})]$
Reynold's Number $\operatorname{Re}=c \cdot L_{F} / v[-]$
$v=$ Kinematic Viscosity [$\left.\mathrm{m}^{2} / \mathrm{s}\right] ; \rho=$ Density $\left[\mathrm{kg} / \mathrm{m}^{3}\right]$
$c=$ Velocity $[\mathrm{m} / \mathrm{s}] ; \mathrm{L}_{\mathrm{F}}=$ Flow Length $[\mathrm{m}]$
Pressure Drop in tube $\Delta \mathrm{p}_{\mathrm{TB}}=\lambda \cdot \mathrm{p}_{\mathrm{D}} \cdot \mathrm{L}_{\mathrm{T}} / \mathrm{d}$
$=\lambda \cdot 1 / 2 \cdot \rho \cdot c^{2} \cdot L_{T} / d\left[\mathrm{~N} / \mathrm{m}^{2}\right]$
$\lambda=$ Friction Coefficient [-]; $L_{T}=$ Tube Length [m]
$\mathrm{d}=$ Internal Tube Diameter [m]; $\rho=$ Density $\left[\mathrm{kg} / \mathrm{m}^{3}\right]$
c = Velocity [m / s]
Pump Capacity $P=\eta_{T}{ }^{*} q_{v} \cdot \Sigma \Delta p \quad[W]$
Total Efficiency $\eta_{\mathrm{T}}=\left(\eta_{\text {PUMP }}{ }^{*} \eta_{\text {MOTOR }}\right)$
Efficiency $\eta=\mathrm{P}_{\text {PERFORMED }} / \mathrm{P}_{\text {AbSORB }}$
$\mathrm{q}_{\mathrm{v}}=$ Volume flow $\left[\mathrm{m}^{3} / \mathrm{s}\right.$]
$\Sigma \Delta \mathrm{p}=$ Sum of all pressure drops in the circuit $[\mathrm{Pa}]$

ELECTRICITY | ELECTRICITET

Power / Capacity of a 1-Phase System :
$P=U_{P H} \cdot I_{P H}[W]$
Power / Capacity of a 3-Phase System :
$P=\sqrt{ } 3 \cdot U_{N} \cdot I_{N} \cdot \cos \varphi \quad[W]$
$\mathrm{U}_{\mathrm{N}}=$ Net Voltage [V] ; $\mathrm{I}_{\mathrm{N}}=$ Net Current [A]
$U_{\text {PH }}=$ Phase Voltage [V] ; $\mathrm{I}_{\mathrm{PH}}=$ Phase Current [A] $\cos \varphi=$ Phase Angel [-]
$\cos \varphi=1$ for Heating elements and other simple resist.
$\cos \varphi<1$ for Electrical Motors (inductive resistance).

Power, Voltage and Current in Conventional Resistances
Ohm's Law
$\mathrm{U}=\mathrm{R} \cdot \mathrm{I}$ [V]

Power expressed by the resistance
$P=U \cdot I=U^{2} / R=I^{2} \cdot R \quad[W]$

U = Voltage [V] ; I = Current [A]
$R=$ Resistance [Ω]| [Ohm]

